Optical properties of marine DOM in the NW Iberian coastal upwelling system

X.A. Álvarez-Salgado¹, C. Romera-Castillo², C. Lønborg¹, M. Nieto-Cid¹, C. Marrasé²

¹ CSIC, Instituto de Investigaciones Marinas, Vigo, Spain
² CSIC, Instituto de Ciencias del Mar, Barcelona, Spain

International DOM Spectroscopy Workshop
21-23 May 2010, Granada, Spain
CDOM in the NW Iberian upwelling system

outline of this talk

► study site: the NW Iberian upwelling system in brief
► CDOM in rain water of the Ría de Vigo
► CDOM in marine waters of the Ría de Vigo
► *in vitro* net community production (NCP) of fluorescent CDOM
 ► daily incubations
 ► monthly incubations
the NW Iberian upwelling system in brief
the rías, large coastal embayments driven by remote winds

S. Groom, PML, UK (satellite images) & C. Souto, UVigo; Spain (animation)
the NW Iberian upwelling system in brief

the rías, large coastal embayments driven by remote winds
the NW Iberian upwelling system in brief
the rías, large coastal embayments driven by remote winds
CDOM in rain water to the Ría de Vigo
absorbance, induced fluorescence and quantumn yield of CDOM

DOC = 174(±13) \cdot P^{-0.68(±0.05)}
R^2 = 0.47, p < 0.01
CDOM in rain water to the Ría de Vigo
absorbance, induced fluorescence and quantum yield of CDOM

\[a(254) = 33.1 \text{ m}^2 \text{ mol C}^{-1} \]

\[a^*(340) = 7.7 \text{ m}^2 \text{ mol C}^{-1} \]

\[R^2 = 0.85, \ p < 0.001 \]
CDOM in rain water to the Ría de Vigo
absorbance, induced fluorescence and quantum yield of CDOM

R² = 0.37, p <0.001

R² = 0.21, p <0.001

R² = 0.25, p <0.002
CDOM in marine waters of the Ría de Vigo absorbance, induced fluorescence and quantum yield of CDOM

\[
\begin{align*}
\text{DOC (µmol L}^{-1}\text{)} & \quad R^2 = 0.63, \quad p < 0.001 \\
\log(a(340)) & \quad F(340/440) (QSU)
\end{align*}
\]

\[
\begin{align*}
49 \pm 1 \text{ µmol L}^{-1} & \quad a^*(340) = 14.4 \pm 0.8 \text{ m}^2 \text{ mol} C^{-1} \\
\Phi(340) & \quad 0.83 \pm 0.05 \%
\end{align*}
\]
CDOM in marine waters of the Ría de Vigo
absorbance, induced fluorescence and quantum yield of CDOM

\[Y = \alpha_0 + \alpha_1 \times S \]
\[\Delta Y = Y - \alpha_0 - \alpha_1 \times S \]

microbial: 86%
photochemical: 14%

microbial: 23%
photochemical: 77%

\[\Phi(340) = 1.1 \pm 0.1 \% \]

\[\Delta a^*(340) \text{ (m}^2 \text{ mol C}^{-1}) \]

\[R^2 = 0.45, \ p < 0.001 \]
in vitro net (microbial) community production (NCP) of FDOM
daily production of marine humic-like substances

► sixteen visits through the seasonal cycle, five depths
► incubated 24 hours at in situ light and temperature conditions

Nieto-Cid et al., Limnol. Oceanogr. 51: 1391–1400, 2006
in vitro net (microbial) community production (NCP) of FDOM
daily production of marine humic-like substances

\[\Delta \text{FDOMm}/\Delta R = 8.1 (\pm 0.9) \times 10^{-3} \mu \text{g eq QS} (\mu \text{mol O}_2)^{-1} \]

\[R^2 = 0.54, \, n = 79, \, p < 0.001 \]

in situ net (microbial) community production (NCP) of FDOM separating water mass mixing from microbial production of FDOM

\[FDOM_m = \alpha_0 + \alpha_1 \times S \]

\[O_2 = \beta_0 + \beta_1 \times S \]

\[\Delta FDOM_m = FDOM_m - \alpha_0 - \alpha_1 \times S \]

\[\Delta O_2 = O_2 - \beta_0 - \beta_1 \times S \]
in situ net (microbial) community production (NCP) of FDOM separating water mass mixing from microbial production of FDOM

\[\frac{\Delta \text{FDOMm}}{\Delta \text{O}_2} = -7.5 \pm 0.6 \times 10^{-3} \text{ g eq QS (\text{\textmu mol O}_2)}^{-1} \]

\[R^2 = 0.50, \ n = 64, \ p < 0.001 \]

\[\frac{\Delta \text{FDOMm}}{\Delta R} = 8.1 \pm 0.9 \times 10^{-3} \text{ g eq QS (\text{\textmu mol O}_2)}^{-1} \]

\[R^2 = 0.54, \ n = 79, \ p < 0.001 \]

in vitro photo-degradation of FDOM
daily photo-bleaching of marine humic-like substances

Nieto-Cid et al., Limnol. Oceanogr. 51: 1391–1400, 2006
in vitro photo-degradation of FDOM
interactions microbial production-photodegradation

Nieto-Cid et al., Limnol. Oceanogr. 51: 1391–1400, 2006
in vitro net heterotrophic community production of FDOM
long-term net production of protein- and marine humic-like substances

- twelve visits through the seasonal cycle, one depth
- surface water filtered through 0.2 μm
- mixed with 10% the same water filtered 1.2 μm
- incubated in the dark at 15°C from 50 to 70 days

in vitro net heterotrophic community production of FDOM

kinetics of the net production of protein- and marine humic-like substances

\[
\text{DOC}(t) = B\text{DOC} \cdot \exp(-k_{\text{DOC}} \cdot t) + R\text{DOC}
\]

\[
\text{FDOM}_m(t) = P\text{DOM}_m \cdot \left[1 - \exp(-k_m \cdot t) \right] + \text{FDOM}_m(0)
\]

\[
\text{FDOM}_t(t) = B\text{DOM}_t \cdot \exp(-k_T \cdot t) + R\text{DOM}_t
\]

in vitro net heterotrophic community production of FDOM kinetics of the net production of protein- and marine humic-like substances

in vitro net heterotrophic community production of FDOM kinetics of the net production of protein- and marine humic-like substances

\[k_{\text{DOC}} = 0.05(\pm 0.02) + 0.58(\pm 0.08) \cdot k_T \]

\(R^2 = 0.86, \ p < 0.001 \)

\[72 \pm 23\% \]

\[5 \pm 2\% \ \text{day}^{-1} \]

in vitro net heterotrophic community production of FDOM kinetics of the net production of protein- and marine humic-like substances

\[k_M = 0.02(\pm 0.01) + 0.17(\pm 0.04) \cdot k_{\text{DOC}} \]

\[R^2 = 0.64 , p < 0.01 \]

¡Gracias por vuestra atención!
Thank you for your attention!