Characterising dissolved organic matter fluorescence with parallel factor analysis

Tutorial comments
http://spectroscopyworkshop.weebly.com

Colin A. Stedmon
cst@dmu.dk
Approaches to characterising DOM fluorescence

› Uni-variate
 › Peak/shoulder intensities
 › Ratios
 › Specific spectra (ex, em or sync)

› Multi-variate
 › PCA
 › PARAFAC

› Choose the right approach for each specific study

› Design the study with the analysis approach in mind

Zepp et al 2004
Boehme et al 2004
McKnight et al 2001
Osburn et al 2009
Boehme et al 2004
Data quality

- The results are only as good as the quality of data used. No magic involved.

Absorbance $\lambda <0.04 \text{ cm}^{-1}$ ($a_\lambda = 10 \text{ m}^{-1}$), inner filter is $<5\%$
Background on Multi-way analysis?

› PARAFAC is one of a range of multi-way data analysis techniques.
› The term multi-way describes data with more than two dimensions (modes).
› Spectral fluorescence data is multi-way (3-way) as it varies as a function of excitation and emission wavelength.
› Combining the data results in a box of data.
Understanding the PARAFAC algorithm

- EEM of a fluorophore (1) is the product of its emission (b_1) and excitation (c_1) spectra. ($Z_1 = b_1 c_1^T$).

\[
\begin{array}{c}
\text{b}_1 \\
\text{c}_1
\end{array}
\]

\[
\begin{array}{c}
\text{Z}_1
\end{array}
\]

- The fluorescence intensity will also vary with fluorophore concentration (a_1)

\[
X = a_1 Z_1 = a_1 b_1 c_1^T
\]

- For each element of matrix X this can be re-written as

\[
x_{jk} = a_1 b_{1j} c_{1k}
\]

where j and k refer to emission and excitation wavelengths.
Understanding the PARAFAC algorithm

› From the previous slide we now have the fluorescence of a fluorophore as

\[x_{jk} = a_1 b_{1j} c_{1k} \]

› If there are two fluorophores it becomes

\[x_{jk} = a_1 b_{1j} c_{1k} + a_2 b_{2j} c_{2k} \]

› If there are three…

\[x_{jk} = a_1 b_{1j} c_{1k} + a_2 b_{2j} c_{2k} + a_3 b_{3j} c_{3k} \]

› Which simplifies to…

\[x_{jk} = \sum_{f=1}^{F} a_f b_{jf} c_{kf} \]

› For more than one sample (i=1, 2…I) it becomes…

\[x_{ijk} = \sum_{f=1}^{F} a_{if} b_{jf} c_{kf} \]

› Which is the equation behind PARAFAC
PARAFAC analysis

The model is fitted using an alternating least squares approach. i.e. consecutively varying the values of the matrices A, B and C in order to minimize the unexplained data (residuals)

\[
X_{ijk} = \sum_{f=1}^{F} a_{if} b_{jf} c_{kf} + \varepsilon_{ijk}
\]

- Measured data
 - i samples
 - j emission wavelengths
 - k excitation wavelengths

- Residuals
 - Unexplained data (e.g. remaining fluorescence, scatter, instrument noise)

- Model data
 - Concentrations of each component
 - Emission properties of each
 - Excitation properties of each
Example of fitting procedure - changing loading estimates

As the model fits the values of A, B and C are varied sequentially repeatedly until no improvement in fit is achieved (convergence).

Above is an example of the emission loadings for a three component model changing as the iterations progress.

No assumption on the shape of the loadings
Assumptions

› Change in concentration of an analyte only influences its fluorescence intensity (not characteristics i.e. “shape”):
 › $b_{\lambda_{Em}} \ c_{\lambda_{Ex}}$ are fixed for each component.

› Beer Lamberts law
 › Linear dependence between fluorescence and concentration

› Components are independent of each other

› Don’t over interpret.
 › simple mixtures: components can be fluorophores
 › complex mixture (DOM): we have little knowledge of the structures or phenomena responsible.
Data considerations

› No magic number
› >30 generally a good start
› Large data set much easier to work with
› Try to have a dataset than spans a gradient or development (mixing, seasonal, t) rather than a collection of individuals
 › e.g. one sample from 60 different lakes will be difficult to characterise with PARAFAC. PCA probably best for grouping data.
› Global/regional fixed components.
 › apply with caution
 › maybe…but are we there yet? What about intercalibration?
Approach

› **Explorative data analysis**
 › determine outliers (due to error or just a unique sample or \(\lambda \) region)
 › ensure robustness
 › arrive at first estimate of suitable number of components (e.g. 3-5, or 5-7)
 › iterative approach, get to know your data - add/remove samples and/or wavelengths

› **Model validation**
 › if the earlier step is carried out thoroughly, this is very simple
 › Residual analysis
 › Component spectra: do they look sensible? i.e. organic fluorescence
 › Split half analysis