Observations of chromophoric dissolved and detrital organic matter using remote sensing in Antarctic waters: Validation, dynamics and regulation

Eva Ortega-Retuerta
Dave A. Siegel, Norm B. Nelson
Carlos M. Duarte
Isabel Reche

International DOM spectroscopy workshop
Granada, May 20th 2010
The development of ocean color satellite oceanography

Development of remote sensing:

Determination of biogeochemical parameters from the space

Sensors situated in polar-orbiting satellites

Different wavelengths are used for different applications
Ocean Color Remote Sensing

Two principal sensors: SeaWIFS and MODIS:

Passive sensors that measure reflected radiation at 7 discrete wavelength bands (visible and infrared)
The development of ocean color satellite oceanography

What do we want to measure?

Inherent Optical Properties:
Absorption and backscattering of water, pigments, CDOM and detrital particles

![Example absorption spectra](image)

$\text{Example absorption spectra}$

Wavelength (nm)

$\text{Absorption (arbitrary units)}$

400 450 500 550 600 650 700

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

$\text{b}_{\text{bw}}(\lambda)$

$\text{b}_{\text{bp}}(\lambda)$ – open ocean range

![Graph showing absorption spectra](image)

Wavelength (nm)

400 450 500 550 600 650 700

0 0.5 1 1.5 2 2.5 3×10^{-3}
The development of ocean color satellite oceanography

- Allows information about broad areas of the ocean
- Allows to obtain data at a daily basis or near-real time

My data after 30 days on a boat

Seawifs data after 1 day cycle
Remote sensing of ocean color

Aim: To get information of inherent optical properties (IOPs) from total reflected radiance

Two steps:

1) Atmospheric correction to retrieve water-leaving radiance (L_W)

2) Algorithms to retrieve biogeochemical variables from L_W

L_W: function of water and inherent optical properties (IOPs)
The development of ocean color satellite oceanography

Application of atmospheric correction algorithms

<table>
<thead>
<tr>
<th>Band</th>
<th>Center (\lambda) (nm) SeaWiFS</th>
<th>Center (\lambda) (nm) MODIS</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>412</td>
<td>412</td>
<td>CDOM and detritus</td>
</tr>
<tr>
<td>2</td>
<td>443</td>
<td>443</td>
<td>CDOM- pigment</td>
</tr>
<tr>
<td>3</td>
<td>490</td>
<td>488</td>
<td>Pigment algorithm</td>
</tr>
<tr>
<td>4</td>
<td>510</td>
<td>531</td>
<td>Pigment algorithm</td>
</tr>
<tr>
<td>5</td>
<td>555</td>
<td>551</td>
<td>Pigment algorithm</td>
</tr>
<tr>
<td>6</td>
<td>670</td>
<td>667</td>
<td>Atmospheric correction</td>
</tr>
<tr>
<td>7</td>
<td>765</td>
<td>748</td>
<td>Atmospheric correction</td>
</tr>
<tr>
<td>8</td>
<td>865</td>
<td>869</td>
<td>Atmospheric correction</td>
</tr>
</tbody>
</table>
Remote sensing of ocean color

Aim: To get information of inherent optical properties (IOPs) from total reflected radiance

Two steps:

1) Atmospheric correction to retrieve water-leaving radiance (L_W)

2) Algorithms to retrieve biogeochemical variables from L_W

L_W: function of water and inherent optical properties (IOPs)
Algorithms to retrieve IOP’s from L_W
Absorption and backscattering of water, pigments, CDOM and detrital particles

$$L_W = f(a_T + b_T)$$

$$a_T(\lambda) = a_w(\lambda) + a_{ph}(\lambda) + a_{cdm}(\lambda) + a_{det}(\lambda)$$

$$b_T(\lambda) = b_{bw}(\lambda) + b_{bp}(\lambda)$$
Remote sensing of ocean color

To retrieve IOP’s (primarily chl a) from L_W:

Empiric algorithms:

✓ $L_W = f({\text{chl}})$
✓ Assume covariation between chl and other IOPs
✓ Not always valid
Remote sensing of ocean color

Semianalytic algorithms: Retrieve inherent optical properties independently

GSM algorithm (Garver-Siegel-Maritorena)

\[
L_{WN}(\lambda) = \left(\frac{tF_0(\lambda)}{n_{sw}^2} \sum_{m=1}^{2} g_m \right) \left[\frac{b_{bw}(\lambda) + BBP(\lambda_0/\lambda)^\eta}{b_{bw}(\lambda) + BBP(\lambda_0/\lambda)^\eta + a_\lambda(\lambda) + Chl_\lambda(\lambda) + CDM exp[-S(\lambda - \lambda_0)]} \right]^m
\]
Remote sensing of ocean color

The Antarctic Peninsula

- Highly productive area limited to ice-free periods
- In high latitude regions, frequent satellite measurements are difficult to obtain
- Previous studies have reported an underestimation of satellite data of chlorophyll a when using global algorithms
Our Goals:

✓ To validate the GSM algorithm for satellite determinations of CDOM in the Antarctic Peninsula, and test CDOM as a potential source of chl a underestimations

✓ To describe spatial and temporal dynamics of CDOM in the area and their potential drivers using satellite data
Protocol

Field database:

- SeaBASS: Greg Mitchell 2000-2002
- ICEPOS: 2004-2005

Satellite database:
GSM CDM products
- 1997-2001: SeaWIFS
- 2002-2005: merged(SeaWIFS+MODIS)

http://www.icess.ucsb.edu/OCisD/
Validation

20 match-ups

when considering only field CDOM:

✓ Slope > 1
✓ $r^2 = 0.70$

when considering field CDOM + detrital absorption:

✓ Slope = 1
✓ $r^2 = 0.75$

The GSM algorithm seems accurate to obtain CDM data in the Antarctic Peninsula
CDM Distribution

CDM spatial distribution

✓ high CDM near land and areas of recent ice melting

CDM seasonal dynamics

✓ Highest CDM at the end of austral spring
✓ Dynamics from homogeneous to patchy pictures
Good correspondence between CDM and chlorophyll a spatial distributions
Seasonal dynamics of chlorophyll a and CDM are also related
CDM has an ultimate algal source?

Phytoplankton → Non-chromophoric DOM → BACTERIA → CDOM

CDM and chlorophyll are driven by the same factors?

✓ Antarctic Ecosystem: Seasonally driven by the dynamics of the ice cap

ICE → Nutrients → Organisms → CDOM

Direct source
Long-term dynamics

CDM Anomaly = \(\frac{CDM_a - CDM_a}{CDM_a} \times 100 \)

8 year time series
AAO Index:
Difference of atmospheric pressures at sea level between 40 and 65 S

Positive AAO around Antarctic Peninsula:

✓ Increase Sea Surface Temperature
✓ Decrease ice extent
✓ Increase chl a

Positively related to CDM anomaly
CDM around Antarctic Peninsula:

Seasonal drivers:
- ✓ Phytoplankton
- ✓ Ice advance and retreat

Climatic forcings:
- ✓ Antarctic Oscillation Index
Thanks!!!

Organizers of DOM Spectroscopy Workshop
Crew of R/V Hesperides and UTM
Institute For Computational Earth System Science (UCSB)
You all for your attention!!!